
The Development of DRUM:
A Software Tool for Video-assisted
Usability Evaluation
Miles Macleod and Ralph Rengger

National Physical Laboratory
DITC HCI Group
Teddington, Middlesex, TW11 0LW, UK

Tel: 081-943 6097 (+44 81 943 6097)

Fax: 081-977 7091 (+44 81 977 7091)

Email: miles@hci.npl.co.uk; Miles.Macleod@eurokom.ie

The development is reported of a practical software tool which supports
video-assisted observational evaluation of usability. The Diagnostic Recorder
for Usability Measurement (DRUM) helps evaluators to organise and analyse
user-based evaluations, and to deliver measures and diagnostic data. This
paper reports DRUM's rationale, theoretical background, requirements
capture and collaborative iterative development. It outlines DRUM's
functionality and manner of use. DRUM runs on Apple® Macintosh™, drives
a range of video machines, and supports management of evaluation data, task
analysis, video mark-up and logging (with find and replay of logged events),
analysis of logged data and calculation of metrics.

Keywords: HCI, Usability, Observational evaluation, Tools, Video protocol
analysis, Usability engineering, Usability metrics.

1. Introduction

There is a widely recognised need for cost-effective usability engineering and evaluation
(Karat, 1992). This paper reports the development of a software tool which provides
practical support for observational evaluation of usability, and can reduce video protocol
analysis times to two or three hours per hour of video. DRUM, the Diagnostic Recorder for
Usability Measurement, has been developed at NPL, initially within ESPRIT Project 5429 –
MUSiC: Metrics for Usability Standards in Computing. DRUM supports quantitative
evaluation, particularly the MUSiC Performance Measurement Method (Rengger et al.,
1992), which is based on observation of task performance and analysis of how successfully
people achieve task goals when using a system. DRUM also has wider applicability,
assisting the generation and delivery of diagnostic feedback to a product’s designers
concerning usability defects.

DRUM, now in Version 2.0, has been developed iteratively since 1990, to meet the
identified needs of usability evaluation. Development has involved close co-operation
between HCI specialists, human factors professionals and software engineers, in
collaboration with industrial users. DRUM supports the management of data at the different
stages of observational evaluation, from selection of users to output of results. It provides

2 Miles Macleod and Ralph Rengger

facilities for editing and browsing task analyses. It gives computer assistance for video
control and the creation of interaction logs, with find and video replay of any logged event.
It supports analysis of data, and calculation of metrics. DRUM has a graphical user
interface, on-line context-sensitive and hypertext help, and a comprehensive user manual. It
runs on Apple Macintosh hardware, and drives a variety of video machines.

Video recording offers considerable advantages for usability evaluation. Video clips of end-
users working with a system can provide persuasive evidence for designers and developers
of the usability of their system, and of specific problems. Video clips alone, though, are
insufficient for usability evaluation; some kind of analysis is required. The first step in
analysis, typically, is to produce a time-stamped log recording observed events. However,
that raw interaction log will contain too much low-level detail to be of use to designers and
managers. If what has been observed and logged can be analysed to give valid measures of
usability, the evidence becomes convincing. DRUM facilitates such analysis, and provides
assistance throughout the process of observational usability evaluation. Video logging and
analysis has previously been very time-consuming, with expected analysis times of ten
hours per hour of video. Using DRUM, this can be reduced two or three hours for each hour
of video, depending upon the nature and level of detail of the analysis.

2. Theoretical Background

2.1. Methods for Evaluating Usability

Methods for evaluating usability can be categorised according to a number of different
criteria (see, for example, Howard and Murray, 1987; Maguire and Sweeney, 1989;
Whitefield, Wilson, & Dowell, 1991). A recent overview of approaches to evaluation is
provided by Macleod (1992). Methods giving reasonably rich data about usability fall into
three principal categories:

• Expert methods, based on expert judgement about a system or design (and hence
dependent on available expertise).

• Theoretical methods, based on models of the user and system, and how they interact.

• User-based methods, where usability data are gained as a result of people using systems
or prototypes. User-based methods divide broadly into survey methods, which give a
picture of users' subjective views, and observational methods.

When a functioning system or prototype is available, user-based methods can provide
arguably the most accurate and complete picture of usability. In any user-based evaluation
it is desirable to ensure that the circumstances in which a prototype or system is evaluated
match as accurately as possible the (intended) circumstances of system use. This includes
characteristics of the users, the tasks they perform, and the organisational, physical and
technical environments: in MUSiC these are collectively referred to as the Context. The
MUSiC Context Guidelines Handbook (Maissel et al., 1991), provides guidance and
support for this aspect of evaluation.

Observation of users, combined with an appropriate method for analysing what is observed,
offers usability data of two kinds:

i. Diagnostic data - concerning usability problems and defects.

A promising approach to diagnostic usability evaluation involves analysis of critical
incidents and breakdowns, and is articulated by Wright and Monk (1989), drawing on
the work of Winograd and Flores (1986). It is incorporated into a practical evaluation
method by Wright, Monk and Carey (1990), who recommend the use of video
recording.

The Development of DRUM 3

ii. Performance data from quantitative evaluation; for example, the level of work goal
achievement by various classes of user, performing representative tasks in particular
environments.

A method for video-assisted, user-based performance measurement has been developed
within the MUSiC Project. The method gives measures of effectiveness and efficiency
of work goal achievement, and measures of time spent unproductively by users, for
example encountering problems and seeking help. It is documented in the MUSiC
Performance Measurement Handbook (Rengger et al., 1992), and is being taken up by
industry.

DRUM was developed to support the derivation of quantitative performance data and
diagnostic data, and can be applied in a wide range of observational evaluation.

2.2. Recording and Analysing Data

Observational evaluation can be carried out most conveniently - from the evaluator's
viewpoint - in a usability laboratory, where users can be provided with a simulation of the
workplace, and sheltered from the observers by a two-way mirror (one way window).
Alternatively, video and audio data and observational notes can be collected in the actual
workplace, and the subsequent analysis conducted in a usability laboratory, or a suitably
equipped office.

Usability laboratory analyses have in the past sometimes been described as being 'too
focused on micro-issues' (Brooke, J., pers. comm., 1991). Such focus on low-level issues
may arise from genuine academic interest in low-level events, or may be technology led: it
is often easier to capture low-level information, for example by monitoring a system, than it
is to record higher level data. However, when data are captured at the low level of
keystrokes and mouse events, difficulties with data analysis can be encountered (Theaker et
al., 1989; Maguire and Sweeney, 1989). Macleod (1989, 1990) describes a monitoring
system which captures data at the rather higher level of user actions on objects such as
menus and buttons; Kornbrot and Macleod (1990) report the spreadsheet-assisted analysis
of such data. Hammontree et al. (1992) use tailored filters to sift low-level data.

The work reported here aimed explicitly to develop a practical and cost-beneficial tool, to
facilitate observational usability evaluation and support usability analysis at a relatively
high level. A principal goal in developing DRUM was to enable evaluators to deliver
analyses of usability – providing measures and diagnostic data – at a level which can form
the basis for evaluation reports which are comprehensible to people who make decisions
about the development and purchase of software and systems.

The underlying principle is that evaluators observe, and - guided by a method - identify
events of significance to the analysis. DRUM provides a simple means to record these in a
time-stamped log. Evaluators can pre-define, at a chosen level of analysis, the types of
events they wish to log, hierarchically organised if desired. Full control of the video is
provided during logging of a tape. Once any event has been logged, it can be automatically
located on the video, and reviewed. There is rapid access to previously created logs and
other evaluation data files from its database. DRUM supports diagnostic evaluation
(including the identification of evaluator-defined critical incidents) as well as measurement
of usability.

4 Miles Macleod and Ralph Rengger

3. Development Process

3.1. User Requirements Capture

During 1990, a number of 'brain-storming' requirements-capture sessions were held, at
which experienced usability analysts from NPL and HUSAT Research Institute aired and
discussed their requirements for a computer-aided video analysis tool. In addition, three
products were identified which appeared to provide some of the functionalities envisaged as
desirable for the proposed tool. These were: HIMS (developed by Manchester University in
collaboration with the HUSAT Research Institute); EVA (produced by the Fraunhofer-
Institute in Stuttgart); and the STL Usability Workbench (see Panel 1). The functionalities
of all these products were reviewed, and members of the DRUM development team visited
the organisations responsible for their development and were given demonstrations of the
products.

Panel 1 : Products reviewed in defining DRUM requirements specification

HIMS: The Human Interface Monitoring System (Theaker et al., 1989; Maguire
and Sweeney, 1989) is a research tool, constructed as part of a UK Alvey project at
the University of Manchester Institute of Science and Technology. HIMS was
developed on custom-made hardware for use with a domestic stereo VHS video-
cassette recorder. It enables interactive sessions to be reconstructed from the
system’s point of view. Later versions capture display pixels instead of input data
streams to avoid replay errors.

EVA II is a software tool for protocol analysis (Vossen, 1990) providing technical
support for the analysis and evaluation of human behaviour. It runs on an Apple
Macintosh II coupled with a Sony VO 7000 series video recorder. The software of
the protocol system is implemented in HyperCard 1.2 and offers the following
functions: construction of a scheme of behavioural events for an arbitrary task
domain; application of the event classification scheme; browsing through the audio-
visual protocols and modification on the basis of an event classification scheme;
documentation of the resulting protocols in a form suitable for subsequent statistical
analysis.

STL Usability Evaluation Workbench (Laws and Walsh, 1990) was developed on
a Sun 3/60 workstation interfaced to a pair of Sony VO-7630 U-Matic VCRs and
locally networked to an ICL mainframe computer. The Sun runs and controls the
windows software but relies on the ICL mainframe for access to information on
subjects and evaluation sessions held in a relational database. An emphasis is placed
on experimental design.
No specification data were released to NPL, but some of the functions available on
the Workbench are: control and display in a windows environment; a trial
management phase, allowing markers to be set up in real time, video to be captured
and scored and the data processed; VCR control with variable speed, search, freeze
etc., controlled by screen menus, buttons and sliders; event logging, timing and
description (annotation), use of behavioural categories; data processing and statistical
analysis, intelligent searches, production of histograms, pie charts, hard copy etc.;
report presentation; preparation of evaluation report videos.

We should like to acknowledge the influence these systems had on the identification of
potential user requirements for DRUM, and thank the organisations for their co-operation.
Analysis of the results of the requirements capture sessions and the product reviews resulted
in an initial requirements 'wish list' of functions for DRUM (see Panel 2).

The Development of DRUM 5

Panel 2: Requirements specification 'wish list'

GENERAL
• Upward compatibility, with tool and data separation
• Data management facilities
• Sideways compatibility - environment common to Mac and PC platforms
• Modular construction, to allow for modification and expansion
• GUI with ergonomic screen layout - single display area preferred
• Easy navigation around modules and functions, with parallel multi-window displays of the
 logs and the analytical results
• Event locations and durations displayed and referenced in minutes and seconds from the
 start of the task
• On-line help, in support of paper-based manuals

SPECIFIC
Evaluation Manager
• Navigation by task, subject, analyst etc., through a database of evaluation data
• Selection of appropriate sessions, records and logs
• Support for manual datafile management in operating system environment
Record and Log Planner
• Setting up event monitoring and analytical schemes
• Setting up conditions for automatic event flagging
Record and Log Manager
• Support for real-time and post logging of events in the record
• Support for analysis and editing of the log
• Display and reference of event locations and duration by time
• Support for analogue and digital time monitoring
• Support for video monitoring
• Parallel multi-window displays of the logs and the analytical results
Session Recorder
• Synchronous recording of video, audio, analogue and digital data
Record Logger
• Synchronous playback of video, audio, analogue and digital data
• Logging of instantaneous events
• Logging of independent, exclusive and chained interval events
• Continuous availability of replay controls
• Variable replay speed control
• Compatibility between replay controls
• Safe browse mode available
Log Processor
• Statistical analysis and display available
• Automatic on-line derivation of the performance metrics from the logs
• Various print options and functions available
• Support for the export of the logged data and text
• Report generation

The individual requirements were prioritised, and the list provided the basis for the formal
DRUM user requirements specification (Collins, 1991, following the BS 6719:1986
guidance on specifying user requirements for computer-based systems). During the
development of DRUM, where individual requirements were found to conflict, some trade-
offs were necessary in the degree to which they were met. Inevitably some limitations were
also imposed by implementation constraints. The great majority of the requirements written
into the specification have been met, as have further detailed user requirements identified in
the course of iterative prototyping.

6 Miles Macleod and Ralph Rengger

3.2. Development Method and Environment

The user requirements indicated that DRUM would be a tool with complex functionality,
yet a fundamental prerequisite was that it should itself provide a high a level of usability,
and enable effective use with minimal training. Experience of evaluating software produced
using a traditional waterfall (or 'lemming') model of system development suggested that a
rich prototyping approach was essential to tailor the evolving implementation more
precisely to users' needs and capabilities. The order of programming complexity of
DRUM's implementation is indicated by its 14,000 lines of code (HyperTalk, excluding
comments); it was not possible at the specification stage to predict users' final preferences
for many of the alternative detailed design solutions.

The adoption of a prototyping approach, with small and large iteration loops, made a
development environment running interpreted code advantageous. A widely voiced view is
that a prototype should at some point be re-implemented in a more efficient form. This
however requires considerable resources, and effectively freezes development at that point,
unless effort is available for further re-implementations. To gain maximum benefit from
available resources, it was therefore decided that the prototyping environment would also
be the delivery environment, provided it was capable of delivering the required level of
performance.

3.3 From Requirements to Implementation

Initially it had been planned to develop versions of DRUM to run on Apple Macintosh and
IBM PC platforms. PLUS™ was investigated: however, the functionality and speed of the
available version of this were found not to meet our requirements. As no other suitable
cross-platform solution was identified, development continued on Apple Macintosh.
SuperCard™, which offered multiple windows and colour, was found not to meet our
performance requirements. The functionality of HyperCard™ 1.2 was inadequate for our
purposes (lacking re-sizeable windows, groupable text, and background fields displaying
shared text). HyperCard 2 was chosen since it offered adequate functionality, and
performance was found to be more than acceptable, particularly on higher powered
machines. Care was taken throughout the development of DRUM to achieve acceptably
fast execution of code, using comparative speed tests of algorithms. Where of advantage,
key routines have been compiled.

An overall aim was that the implemented DRUM should meet users' needs in an effective,
efficient and satisfying manner. To this end, a number of guiding principles were followed,
which underlie good graphical interface design. A clear expression of a set of such guiding
principles is provided by Apple® Human Interface Guidelines: The Apple Desktop Interface
(Apple Computer, 1987), which also gives more detailed style guidance for Macintosh look
and feel. In developing DRUM, we also drew on our own experience in developing and
evaluating graphically interfaced systems. There were some compromises to be made
between the Apple Desktop Interface style, and the HyperCard Human Interface Style: for
example, whether single or double clicks are required to actuate or open an object. The card
metaphor was avoided, but navigation through DRUM's modules is achieved by single
clicks on buttons.

3.4. Video Control and Event Logging

The user requirements included, as a high priority item, support for real-time and
retrospective logging of events. It is worth here considering briefly the rationale and
implications of such a requirement. Some existing logging systems limit the evaluator to
marking up event logs in real-time, and provide no direct contact between the logging

The Development of DRUM 7

program and the video player. Logging which is limited to real-time introduces temporal
and observational inaccuracies. It relies on rapid and accurate marking-up of the log, while
the observer's attention is divided between the observation of the interaction and the control
of the logging. It also does nothing to facilitate the more considered analysis of critical
incidents. Retrospective logging usually involves pausing and reviewing, and therefore is
only really practicable when the logging software can be used to drive the video player.
During refinement of the requirements, it was considered essential that DRUM should
support both real-time and retrospective logging of an extendible set of user-defined events
as well as standard events; that the log should itself provide a means of controlling the
video (by point and click); and that it should be possible to annotate events recorded in the
log with comments, both in real time and retrospectively.

An aspect of video control essential to DRUM's user requirements is search, which enables
the rapid location of previously-logged events. To be performed accurately, this requires
video equipment which can register frame codes or time codes on the tape. This code can be
vertically integrated in the video signal (VITC); a cheaper alternative is horizontal
integration on an audio track (HITC). Communication between computer and video
requires a computer interface board. DRUM communicates with this via the Mac serial
port. Video machines have different command sets, and employ various different protocols
for communicating commands. There are also different formats for communicating time
and frame codes. HITC codes may not be displayed on the player. It was therefore
necessary to implement different video-driver modules for DRUM, and to ensure that
DRUM generically provides sufficient functionality, including display of time and frame
codes. One technical problem is that video command protocols can require twelve or more
bytes per command and may require inter-byte pauses. Displaying frame codes on a
computer – during play or record – involves cyclical transmission of frame code requests,
receipt of frame codes, translation and display. This can lead to unacceptable delays in the
computer's response to concurrent user actions (such as logging). DRUM avoids this by
interleaving checks for user actions into the cycle.

During the development of DRUM, various means of representing the event log were
considered. An appealing idea was to produce a graphical trace (in real time or
retrospectively), where the X axis represents time, and the states of one or more categories
of event are represented on the Y axis, rather in the manner of a digitised multi-channel
seismograph trace. This raises some interesting implementation questions, particularly
where a log is built up by browsing back and forth through a recording to study specific
events. The current version of DRUM presents the log in text form, rather than as a
graphical trace. It meets the essential requirement that a log can be sorted into temporal
order. For this DRUM employs a sort algorithm whereby, when two events share a common
start time but have different end times, the longer (i.e. embracing, or parent) event is placed
before the shorter.

4. DRUM's Modules and Functionality

4.1. Overview

DRUM is divided into modules, each supporting a different aspect of usability evaluation.
User tests with early prototypes revealed that the nature and purpose of the modules (self-
evident by this stage to the design team) were not immediately apparent to naive users, who
were having difficulties forming an adequate overall conceptual model. To overcome this
problem, an opening screen was designed which provides a high-level view of DRUM's

8 Miles Macleod and Ralph Rengger

functionality (Figure 1). This gives direct access to each module, and introduces users to the
navigation bar at the bottom of the screen, which is has a consistent screen location
throughout DRUM. It also gives access to DRUM Help, and to the balloon help system
which provides information about screen objects. Representations of the navigation bar,
with relevant highlighting, are also used throughout the DRUM User Guide (a paper
manual), to show at a glance which module of DRUM is being described at any point in the
text.

4.2. DRUM Modules

The four modules provide support for:

• management of data through the various stages of observational evaluation

• task analysis, and representation of classes of events and usability problems

• video control and creation of interaction logs of evaluation sessions

• analysis of logged data and calculation of metrics

Figure 1: DRUM Overview Screen

4.2.1. DRUM Evaluation Manager

The Evaluation Manager provides an organised means for managing, manipulating and
displaying data from the different stages of observational usability evaluation. DRUM uses
ASCII files for data storage, allowing flexible compatibility with word processors,
spreadsheets and statistics packages. The left hand area of the screen gives access to
browsers for each type of data, and provides a graphical representation of the organisation
of the different classes of data. Figure 2 shows the Log Browser, which gives access to log
files from the current evaluation.

The Evaluation Manager browsers give access to data about:

• Subjects - the people being observed in evaluations

• Tasks - analytic schemes describing users' tasks and observable events

• Recording plans - technical arrangements for capturing raw data

• Evaluations - title and description. Further data relating to a given evaluation are
grouped together, and can be accessed when that evaluation has been chosen from the
Evaluations Browser.

• Video recordings of evaluation sessions

• Logs of observed user and system activities, created using DRUM

• Measures and metrics - calculated values for individual subjects and groups, derived
from analysing logged task performance

• Reports of evaluation findings

Figure 2: DRUM Evaluation Manager, displaying the Log Browser

4.2.2. The DRUM Scheme Manager

Evaluators may wish to look out for many different kinds of event when studying a video
record of an evaluation session. DRUM provides as standard a basic set of event types,
identified in the MUSiC Performance Measurement Method as being of potential
significance to the use of a system. Each event type is represented on screen as an event
button. These buttons are used in the Recording Logger for logging observed instances of
such events.

The Development of DRUM 9

The DRUM Scheme Manager (Figure 3) enables evaluators to add and edit their own
further event types (which may be sub-tasks or activities), and to create hierarchical
descriptions of the tasks to be performed by subjects during evaluation sessions. Evaluator-
defined events can be created, edited, renamed or deleted; parent events can be deleted
complete with their children. DRUM supports hierarchical task analysis at up to four levels
of decomposition. A browser provides simple navigation through the hierarchy.

Some events may occur at various stage of task performance (e.g. types of error): DRUM
supports the creation of 'Pooled Event' buttons, which are accessible to the evaluator
independently of the hierarchical event display.

Evaluators can attach a definition, categorisation and comments to each evaluator-defined
event type; these are displayed in editable fields when the relevant event button is selected.
Once a task-analytic scheme has been created, it can be stored in the DRUM Database for
future use. Schemes can also be merged.

Figure 3: DRUM Scheme Manager

4.2.3. The DRUM Recording Logger

The DRUM Recording Logger (Figure 4) provides the functions needed to create and edit
video-related logs of what is observed. It gives full control of the video in its two sub-
modules: the Recorder assists log-creation in real-time, while recording on video; the
Logger assists retrospective logging. In practice, the constraints of logging in real-time
during an evaluation session limit what can be logged immediately. Typically, it is practical
to mark-up key events, such as the start and end of tasks, and a relatively small set of types
of incident. A general purpose Marker is provided for logging events of interest, which can
then be easily located later for further analysis.

As a log is built up, comments can be added to logged instances of events. Log entries can
retrospectively be edited, commented, sorted or deleted. Within the Recording Logger, logs
can be stored in and retrieved from the database. They can be printed out, or loaded into the
Metrics Processor for analysis.

The logger gives quite sophisticated control of the video recorder, including a variable
speed shuttle (which pauses the tape on release, or can be locked in any position), and
frame search. It provides automated location of any logged event on the video, by point
and click at the event frame code in the log display. When an event start frame is clicked
on, DRUM winds the video to that frame, and - if the event has a duration, rather than being
instantaneous - offers the opportunity to view that event clip. The tape is paused at the end
of the event.

Figure 4: DRUM Recording Logger

4.2.4. The DRUM Log Processor

The Log Processor (Figure 5) performs the calculation, from any log in the DRUM
database, of performance measures and performance-based usability metrics (see Rengger
et al. 1992), including:

• task time - total performance time for each task being studied (with a facility for
subtracting times when the task is suspended);

10 Miles Macleod and Ralph Rengger

• snag, help and search times - measures of the time users spend having problems,
seeking help or unproductively hunting through a system;

• effectiveness - derived from measures of the quantity and quality of task output, this is a
measure of how fully, and how well, users succeed in achieving their task goals when
working with a system;

• efficiency - this relates effectiveness to the task time: it is a measure of the rate of
producing the task output;

• relative efficiency - a measure of how efficiently a task is performed by a specific user
or group of users, compared with experts (or with the same task on another system);

• productive period - the percentage of task time not spent in snag, help and search. This
indicates how much users of a system spend their time working productively towards
their task goals.

Results are displayed in numerical and graphical form, and can be saved in the database for
grouping of data from different subjects, for further statistical analysis.

Figure 5: DRUM Log Processor

5. Help System and User Manual

DRUM is supported by a paper-based user manual (Macleod et al. 1992), and provides two
kinds of on-line help:

i. The 'balloon help' system gives the user information about objects visible on screen.
When balloon help is turned on, positioning the mouse pointer over an object brings up a
'speech balloon', giving a brief outline of the purpose and use of the object. This kind of
help is most useful during initial exploration and learning.

ii. 'DRUM Help' (Figure 6), a small program which co-exists with DRUM, provides 114
screens of textual and pictorial explanation and guidance: it gives more procedural, task-
related information. Clicking on any item in the Help index takes the user to the relevant
screen. Where appropriate, pop-up fields provide additional information. There are
hypertext links between terms in the text and other screens; each screen also gives an index
of related topics.

Modal dialog boxes within DRUM also give direct access to contextually relevant
information in DRUM Help, via a Help button.

Figure 6: Two views of DRUM Help

6. Applying DRUM

DRUM can provide support for a wide range of video-assisted observational evaluation.
Organisations already using DRUM have applied it in support of in-house evaluation
methods, as well as the specific MUSiC method. Guidance for the design, planning and
conduct of quantitative observational evaluation of usability is provided by DRUM’s
companion tools:

• The MUSiC Context Guidelines Handbook (Maissel et al., 1991) provides firstly a simple
method for describing key characteristics of the users, tasks and work-environments for
which a system is designed - the 'Context of Use'. Using a questionnaire format, it then
gives the evaluator a structured method for describing characteristics of the users, tasks and

The Development of DRUM 11

environment in which the system is to be evaluated, and of documenting how accurately
these match the intended context of use.

• The MUSiC Performance Measurement Handbook (Rengger et al., 1992) introduces and
explains the method which DRUM was developed to support: it provides instructions for
each stage of evaluation, from planning and design to interpretation of results. It includes a
quick guide, and technical appendices on usability metrics, problem descriptions, and
hierarchical task analysis.

7. The Usability of DRUM

A question frequently asked about tools which support usability evaluation is 'has it been
used to evaluate its own usability?'; in the case of DRUM, the answer is 'yes'. An evaluation
study of the use of DRUM 1.0 was conducted by an evaluator not directly concerned in the
development of DRUM 1.0 (Cant, 1992). The study involved the performance of
representative evaluation tasks – which had been identified in a context of use study – by
seven usability professionals experienced with DRUM Version 1.0, working in typical
usability laboratory environments. Their task output was evaluated, and video recordings
analysed using DRUM. User satisfaction was measured with SUMI, the Software Usability
Measurement Inventory, a fifty item standardised questionnaire developed within MUSiC
(Porteous and Kirakowski, 1992; Kirakowski et al., 1993). With the caveat that the
recommended number of users for a quantitative evaluation is ten or more, the study
provided baseline measures of DRUM's usability for comparison with other tools
supporting those tasks, and provided valuable diagnostic data which have been used in the
development of DRUM Version 2.0. The results demonstrated that DRUM, even in Version
1.0, met the acceptance criteria laid down in the requirements specification.

8. Further Development of DRUM

Work is in progress to extend DRUM's support for diagnostic evaluation. The Diagnostic
Processor will provide data about frequency, duration and location of evaluator-defined
events (e.g. critical incidents, or different categories of error). Other planned enhancements
include: extension of the log sorting functions, to enable grouping of related but temporally
distant events; enhanced graphical displays; grouping of event clips; and further video
driver modules.

12 Miles Macleod and Ralph Rengger

Panel 3: DRUM - technical details

DRUM requires:
 • Apple Macintosh II computer, with a 13" or larger monitor
 • System 7 (or System 6.0.5 or later)
 • HyperCard™ 2.0v2 or later, allocated at least 1.3 MB RAM

DRUM can at present drive the following video recorders:
 • Sony U-Matic VO 7000 and 9000 series, with BKU 701 computer interface, plus

Sony FCG-700 frame code generator
 • Sony Hi-8 with Video Schaay computer interface
 • Panasonic AG-7350 or AG-7355 SuperVHS, with

AG-IA232TC RS-232 board & time code generator/reader

Acknowledgements

Thanks are due to all those who have contributed the development of DRUM, especially:
Nigel Bevan, Miranda Blayney, Rosemary Bowden, Vicki Cant, Stephen J. Collins, Clare
Davies, Andrew Dillon, Annie Drynan, Ian Hosking, Edo Houwing, Rachel Jenkinson, Karl
London, Martin Maguire, Jonathan Maissel, Brian J. Scott, Marian Sweeney, Cathy
Thomas, and Paulus Vossen.

This work was supported by the Commission of the European Communities and the UK
Department of Trade and Industry.

References

Apple Computer (1987), "Human Interface Guidelines: The Apple Desktop Interface",
Wokingham, England, Addison-Wesley.

Cant, V (1992), "Usability Measurement of Information Technology Systems", HUSAT
Memo 583, HUSAT Research Institute, Loughborough, UK.

Collins, S J (1991), "DRUM; Specification of User Requirements", NPL.M1.TW3.1.
ESPRIT Project 5429 - MUSiC, Restricted document, NPL, Teddington, UK.

Hammontree, M L, Hendrickson, J J, and Hensley, B W (1992), "Integrated Data Capture
and Analysis Tools for Research and Testing on Graphical User Interfaces". In Proc.
CHI'92, ACM Press, pp. 431-432.

Howard, S and Murray, D M (1987), "A Taxonomy of Evaluation Techniques for HCI". In:
Bullinger, H-J and Shackel, B (Eds), Human-Computer Interaction - INTERACT'87,
(Proceedings of 2nd IFIP Conference on HCI) Elsevier, Amsterdam. pp. 453-459.

Karat, C-M (1992), "Cost-benefit and Business Case Analysis of Usability Engineering".
CHI'92 Tutorial Notes, ACM Press.

Kirakowski, J, Porteous, M and Corbett, M (1993), "How to Use the Software Usability
Measurement Inventory: The User's View of Software Quality". Proceedings of European
Conference on Software Quality, 3-6 November 1992, Madrid.

Kornbrot, D and Macleod, M (1990), "Monitoring and Analysis of Hypermedia
Navigation". In Diaper et al. (Eds) Proceedings of INTERACT '90, 3rd IFIP Conference
on HCI (Cambridge, UK, 27th - 31st August), Elsevier, pp. 401-406.

The Development of DRUM 13

Laws, J and Walsh, P (1990), The STL Usability Workbench. BNR Europe, Harlow, UK.

Macleod, M (1989), "Direct Manipulation Prototype User Interface Monitoring". In
Sutcliffe, A and Macaulay, L (Eds) People and Computers V (Proc of HCI'89 Conference,
Nottingham, 5-8 September), Cambridge University Press, pp. 395-408.

Macleod, M (1990), "Tools for Monitoring and Analysing the Use of HyperMedia
Courseware". In Oliveira, A (Ed.) Structures of Communication and Intelligent Help for
Hypermedia Courseware, Proceedings of NATO Advanced Research Workshop, Espinho,
Portugal (19-24 April), Springer-Verlag.

Macleod, M (1992), "An Introduction to Usability Evaluation". National Physical
Laboratory, DITC, Teddington, UK.

Macleod, M, Drynan, A, and Blayney, M (1992), "DRUM User Guide". National Physical
Laboratory, DITC, Teddington, UK.

Maissel, J, Dillon, A, Maguire, M, Rengger, R, and Sweeney, M (1991), "Context
Guidelines Handbook". MUSiC Project Deliverable IF2.2.2, National Physical Laboratory,
Teddington, UK.

Maguire, M and Sweeney, M (1989), "System Monitoring : Garbage Generator or Basis for
Comprehensive Evaluation System". In Sutcliffe, A. & Macaulay, L. (Eds.), People and
Computers V (Proc of HCI'89 Conference, Nottingham, 5-8 September), Cambridge
University Press, pp. 375-394.

Porteous, M and Kirakowski, J (1992), "SUMI: The Software Usability Measurement
Inventory". Human Factors Research Group, University College, Cork, Ireland.

Rengger, R., Macleod, M., Bowden, R., Bevan, N. and Blayney, M. (1992), "MUSiC
Performance Measurement Handbook". National Physical Laboratory, DITC, Teddington,
UK.

Theaker, C J, Phillips, R, Frost, T M E and Love, W R (1989), "HIMS: A Tool for HCI
Evaluations". In Sutcliffe, A. & Macaulay, L. (Eds.), People and Computers V
(Proceedings of HCI'89 Conference, Nottingham, 5-8 September), CUP, pp. 427-439.

Vossen, P. (1990). EVA II (Software Tool for Video Protocol Analysis), Fraunhofer-
Institut für Arbeitswietschaft und Organisation, 7000 Stuttgart 80, Nobelstraße 12,
Germany.

Whitefield, A, Wilson, F, and Dowell, J (1991), "A Framework for Human Factors
Evaluation", Behaviour and Information Technology, 10(1), pp. 65-80.

Winograd, T and Flores, F (1986), "Understanding Computers and Cognition: A New
Foundation for Design", Wokingham, UK, Addison Wesley.

Wright, P and Monk, A F (1989), "Evaluation for Design". In Sutcliffe, A. & Macaulay, L.
(Eds.), People and Computers 5, Cambridge University Press, pp. 345-358.

Wright, P, Monk, A.F. and Carey, T. (1990), "Co-operative Evaluation: The York Manual",
University of York, UK.

